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Code associated with: Effects of urbanization on cloud-to-ground lightning strike frequency: a global 
perspective 

Abstract  
Urbanization tends to increase local lightning frequency (i.e., the "lightning enhancement" effect). 
Despite many urban areas showing lightning enhancement, the prevalence of these effects is unknown, 
and the drivers underlying these patterns are poorly quantified. We conducted a global assessment of 
cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate how the likelihood and 
magnitude of lightning enhancement vary with geography, climate, air pollution, topography, and urban 
development. The likelihood of exhibiting lightning enhancement increased with higher temperature 
and precipitation in urban areas relative to their natural surroundings (i.e., urban heat islands and 
elevated urban precipitation), higher regional lightning strike frequency, greater distance to water 
bodies, and lower elevations. Lightning enhancement was stronger in cities with conspicuous heat island 
and elevated urban precipitation effects, higher lightning strike frequency, larger urban areas, and lower 
latitudes. The particularly strong effects of elevated urban temperature and precipitation indicate that 
these are dominant mechanisms by which cities cause local lightning enhancement. 
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License 
The code for this project is licensed via the MIT License.  For full licensing and attribution 
information see https://opensource.org/license/MIT.   See the references below under “Data 
Provenance” for the licensed data used in this global assessment. 

Timeframe 
• Begin date: January 2013 
• End date: December 2020 
• Data collection ongoing/completed? Completed 

 

Geographic location 
349 cities worldwide 

Methods 
Lightning strike data 

We quantified the urban lightning enhancement effect using Earth Networks Total Lightning Network 
(ENTLN) data. ENTLN continuously detects and locates lightning using each discharge's time and signal 
amplitude (Liu & Heckman, 2012); here, we focus on the ENTLN-classified cloud-to-ground flashes, 
which we call lightning strikes. We omitted lightning strikes <10 kA in magnitude to avoid 

https://opensource.org/license/MIT


misclassification with in-cloud lightning (Cummins et al., 1998). We calculated monthly mean lightning 
strike frequency (lightning strikes km-2 yr-1) on a 0.05×0.05-degree grid (ca. 5×5 km) extending from 60°N 
to 60°S latitude for 2013-2020.  

Urban and natural areas 

We used the 2018 Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data (MCD12C1 
Version 6; Friedl & Sulla-Menashe, 2019) on a 0.05-degree grid to identify urbanized land and its 
surrounding natural areas. Spatially, we defined cities as clusters of 0.05 x 0.05-degree cells with more 
than 50% urbanization overlapping the city center, defined by the United Nations World's Cities in 
2018–Data Booklet (UN, 2018), or contiguous with other urban cells. Because the urbanization footprint 
of a city is often a mosaic of developed and undeveloped space (e.g., water bodies), we also included 
any cell with >50% urban area that was within two cells of the city center or contiguous city area (no 
cells of <50% urban area were included in a city). This process collapsed 22 pairs of cities into a single 
urban center (e.g., Dallas/Ft. Worth). We identified 884 cities with >300,000 inhabitants and at least one 
cell comprising >50% urban area.  

We used MODIS to identify natural areas surrounding each city. Specifically, we defined natural areas as 
any combination of non-modified MODIS terrestrial layers (excluding water bodies, urban area, and 
croplands) within 150 km of the boundaries of a city. When a cell was within 150 km of multiple cities, 
we associated that natural area cell with the closest city. To limit edge effects, we removed all natural 
areas within two cells (ca. 10 km) of any cell with >50% urban area. We only retained cities in our 
dataset if they had at least 100 km2 of associated natural area (691 cities qualified). The natural areas 
capture typical lightning frequency of each region with limited direct influence of urbanization, 
functioning as a reference point for evaluating the effect of each urban area. 

Calculating lightning frequency 

We calculated each pixel's average annual lightning frequency using only months with meaningful 
lightning activity. We removed all cities with < 1 lightning strike km-2 yr-1 in their associated natural 
areas. We also removed months from individual cities if their natural areas exhibited < 1 lightning strike 
km-2 yr-1 in those months (328 cities removed). Additionally, we removed months and cities (8 cities in 
total) lacking data for their covariates (e.g., precipitation data was not available for 2019 and 2020, and 
the aerosol optical depth sensor could not make its measurement in certain areas during the study). 
Following these criteria, we ultimately included 349 cities in the analyses. 

We used Glass’s delta effect size and a simulation approach to evaluate whether each city exhibited 
unambiguous lightning enhancement. To calculate Glass’s delta, we divided the mean difference in 
lightning strike frequency (lightning strikes km-2 yr-1) between urban and natural areas by the standard 
deviation of lightning strike frequency of the associated natural area. Glass’s delta was preferable to 
other effect size metrics because the much larger sample size of the natural areas, relative to the cities, 
results in a more precise estimate of standard deviation. Effect sizes ≥0.5 were considered significant 
(Cohen, 1992). We confirmed that 218 of the 228 cities with effect sizes >0.5 were also identified as 
significant using a simulation test based on random pulls from the natural area associated with each 



city. We considered the 218 cities identified with both approaches as those exhibiting unambiguous 
lightning enhancement. This conservative approach likely eliminated false positives while potentially 
producing some false negatives.  

The detection efficiency of ENTLN likely exhibits unquantifiable spatial biases. However, the spatial grain 
of these biases is much larger than that of our city and natural area measurements (150 km radius) 
because individual ENTLN sensors detect lightning over distances >1000 km. We measured the strength 
of urban enhancement by dividing a city's average lightning strike frequency by the average lightning 
strike frequency in its associated natural area (hereafter, urban-natural strike ratio). Accordingly, this 
approach is insensitive to possible differences in detection efficiency among cities or over time. 

Climatological, topographical, and geographic covariates 

We used spatially explicit, gridded data products to aggregate climatological, topographical, and 
geographic covariates for each 0.05 x 0.05-degree cell. We assigned each 0.05 x 0.05 cell the 
proportional average of overlapping sulfur dioxide (SO2) values because of the mismatch in resolution. 
All other data were downscaled or upscaled to the same spatial grain as the lightning data. Climate and 
pollution data were aggregated monthly. The temperature metrics captured monthly averages of daily 
trends and were advantageous because of their broad spatial coverage and fine resolution, but they did 
not capture detailed within-day variation, which could influence both rainfall and lightning activity 
(Sheperd et al., 2015). All other variables had a single value because they did not change during the 
study period (e.g., topography) or data were limited (e.g., population).  

We used these spatially explicit datasets to calculate potential predictors of variation in the lightning 
enhancement effect. For each variable described in Table 2, we extracted its average value for each 
urban area during the months retained in the dataset (i.e., months with > 1 lightning strike km-2 yr-1). We 
calculated annual and cumulative averages of those values from 2013-2020. The only exception was 
regional lightning frequency, which equaled the mean lightning strike frequency across all natural and 
urban cells (i.e., the region). To assess the density of urbanization within each city, we calculated the 
percentage of land covered by natural areas within the urban cells of each city (hereafter, greenspace). 
We also calculated the local effect of urbanization on temperature, precipitation, and all aerosol 
variables. Specifically, we divided the average values of these predictors in the urban areas by their 
average across all cells in the associated natural areas, and we referred to these variables as the 
“variable” ratio (e.g., temperature ratio or precipitation ratio). This allowed us to determine if lightning 
enhancement was directly associated with the effect of urbanization on local climate and pollution, such 
as the urban heat island effect (i.e., urban temperature divided by natural area temperature). We log-
transformed overdispersed variables before analysis (12 of the 17 fixed-effect predictors were 
transformed; average temperature, local precipitation, total elevation, absolute latitude, and 
greenspace were not transformed). Because the annual data for aerosol depth and urban-natural strike 
ratio included 3 and 4 zero values, respectively, we added half the smallest positive value (0.0020 for 
aerosol optical depth and 0.0446 for urban-natural strike ratio) to each variable before transformation.  

Model averaging 



We used Akaike Information Criterion (AIC) model averaging to explore spatiotemporal variation in the 
likelihood and magnitude of the lightning enhancement effect. To evaluate the probability of 
enhancement, we constructed a generalized linear model with a binary response variable indicating 
whether there was lightning enhancement (determined by a threshold of Glass' delta ≥ 0.5). This model 
included a single value for each city with 17 predictors averaged across all years (349 observations). To 
explore spatiotemporal variation in enhancement strength, we assessed how the urban-natural strike 
ratio varied among cities with unambiguous enhancement using annual data from 2013-2018 (218 cities 
with 1,217 city-year observations). Specifically, we constructed a mixed-effect linear model (fitted with 
the lmer function of the lme4 package; Bates et al., 2015) with an urban-natural strike ratio as the 
response variable, a random effect for the city (accounting for the annual lightning variation of each 
city), and the same collection of 17 fixed-effect predictors (Table 2; representing the linear relationships 
between these predictors and the response variable). We used unique annual values for all variables 
with yearly data (i.e., all lightning, climate, and pollution variables). We note that some variables were 
omitted from this final set of predictors (i.e., mean maximum temperature, mean minimum 
temperature, the ratios between urban and natural areas for these two variables, and the total 
concentration of NO2) because of collinearity, as determined by Pearson correlations (R > 0.7) and 
variance inflation factors (VIF > 5). 

We fitted models for every possible combination of these terms (function dredge). Then, we averaged 
all models with AICc values within 4 of the lowest AICc values (function model.avg in package MuMIn; 
Barton, 2010). We scaled all variables (Z-transformation) to allow direct comparison of coefficients, and 
we identified significant predictors as model-averaged coefficients with 95% confidence intervals that 
did not overlap with zero. Additionally, we performed forward model selection and assessed whether 
including pairwise interaction terms between the significant predictors decreased model AIC. We 
verified the appropriate model fit and the need for all transformations by evaluating model residuals 
(e.g., Q-Q plots). 

Data Table   
Table name(s): Pixels_lighting_month_year_v2.csv 
Table description(s): We used this table to create the two datasets needed to run the model and 
estimate the strength and magnitude of the lightning enhancement over urban areas. Based on this 
dataset, we aggregated the data by city by year (to measure the strength of the lightning enhancement) 
and only by city (to measure the magnitude of the lightning enhancement).  
 
 

Column Description Units Code explanation 
or date format 

Empty 
values 
code 

city City     

country Country     



month Month of analysis   

Jan: January, Feb: 
February, Mar: 
March, Apr: April, 
May: May, Jun: 
June, Jul: July, 
Aug: August, Sep: 
September, Oct: 
October, Nov: 
November, Dec: 
December 

 

year Year of analysis     

Area_urban 
Area of the cities (aggregation 
of cells with more than 50% of 
urban coverage). 

Km2   

Lat_city and 
lon_city 

Latitude and longitude of the 
city center are defined in the 
United Nations, Department of 
Economic and Social Affairs, 
Population Division (2018). 
World Urbanization Prospects: 
The 2018 Revision, Online 
Edition, respectively. 

degrees   

Urban_area 

Area of the city defined by the 
United Nations, Department of 
Economic and Social Affairs, 
Population Division (2018). 
World Urbanization Prospects: 
The 2018 Revision, Online 
Edition. 

Km2   

Sd_CG_urban 

The standard deviation of the 
Cloud-to-Ground (CG) lightning 
on each urban cell aggregated 
by city, month, and year.  

number of CG 
lightning km2 
year-1 

 NA 

Mean_CG_urban 
Mean of the CG lightning on 
each urban cell aggregated by 
city, month, and year. 

number of CG 
lightning km2 
year-1 

 NA 

Sd_total_urban 

The standard deviation of the 
total lightning (CG and in-cloud 
lightning) on each urban cell 
aggregated by city, month, and 
year. 

number of 
total lightning 
km2 year-1 

 NA 

Mean_total_urban 
Mean of the total lightning on 
each urban cell aggregated by 
city, month, and year. 

number of 
total lightning 
km2 year-1 

 NA 

Per_urban Average percentage of urban 
coverage in the urban cells or %  NA 



pixels (>50%) that make up the 
area of the city. 

Per_natar_urban 

Average percentage of natural 
coverage in the urban cells or 
pixels (>50%) that make up the 
area of the city. 

%  NA 

Pop_2018 

Population of 2018 defined in 
the United Nations, Department 
of Economic and Social Affairs, 
Population Division (2018). 
World Urbanization Prospects: 
The 2018 Revision, Online 
Edition. 

Thousands of 
people 

 NA 

Mean_elev_urban 
Average elevation of the urban 
cells aggregated by city, month, 
and year. 

masl  NA 

Mean_prec_urban 
Average precipitation of the 
urban cells aggregated by city, 
month, and year. 

kg m-2 month-

1 
 NA 

Mean_tas_urban, 
mean_tmax_urban, 
mean_tmin_urban 

Average mean, minimum and 
maximum temperature of the 
urban cells aggregated by city, 
month, and year. 

K  NA 

Mean_aer_urban 
Average aerosol optical depth 
of the urban cells aggregated by 
city, month, and year.  

μm of 
particulates 
scaled from 0 
to 1 

 NA 

Mean_sulf_urban 
Average sulfate dioxide of the 
urban cells aggregated by city, 
month, and year. 

μg m-3  NA 

Mean_nitr_urban 
Average nitrate dioxide of the 
urban cells aggregated by city, 
month, and year. 

billion 
molecules 
mm-2 

 NA 

Area_natar 

Area of the natural ecosystems 
(cells of non-human 
ecosystems; aggregation of cells 
with more than 90% of natural 
coverage). 

   NA 

Sd_CG_natar 

Standard deviation of the 
Cloud-to-Ground (CG) lightning 
on each natural cell aggregated 
by city, month, and year.  

number of CG 
lightning km2 
year-1 

 NA 

Mean_CG_natar 
Mean of the CG lightning on 
each natural cell aggregated by 
city, month, and year. 

number of CG 
lightning km2 
year-1 

 NA 



Sd_total_natar 

Standard deviation of the total 
lightning (CG and in-cloud 
lightning) on each natural cell 
aggregated by city, month, and 
year. 

number of 
total lightning 
km2 year-1 

 NA 

Mean_total_natar 
Mean of the total lightning on 
each natural cell aggregated by 
city, month, and year. 

number of 
total lightning 
km2 year-1 

 NA 

Per_natar 

Average percentage of natural 
coverage in the natar cells or 
pixels (>90%) that make up the 
area of the natural ecosystem 
associated with each city. 

%  NA 

Mean_elev_natar 
Average elevation of the natural 
cells aggregated by city, month, 
and year. 

masl  NA 

Mean_prec_natar 
Average precipitation of the 
natural cells aggregated by city, 
month, and year. 

kg m-2 month-

1 
 NA 

Mean_tas_natar, 
mean_tmax_natar, 
mean_tmin_natar 

Average mean, minimum and 
maximum temperature of the 
natural cells aggregated by city, 
month, and year, respectively. 

K  NA 

Mean_aer_natar 
Average aerosol optical depth 
of the natural cells aggregated 
by city, month, and year.  

μm of 
particulates 
scaled from 0 
to 1 

 NA 

Mean_sulf_natar 
Average sulfate dioxide of the 
natural cells aggregated by city, 
month, and year. 

μg m-3  NA 

Mean_nitr_natar 
Average nitrate dioxide of the 
natural cells aggregated by city, 
month, and year. 

billion 
molecules 
mm-2 

 NA 

Glass_delta 

Effect size of the CG lightning 
between urban and natural 
areas to define unambiguous 
lightning enhancement. 

   NA 

CG_ratio Ratio between CG lightning in 
urban and natural areas.    NA 

Lat_group 

Location of the city based on 
their latitude. Nothern (>23.5°), 
tropical (23.5°< city >-23.5°) and 
southern (<-23.5°). 

   NA 

Total_ratio 
Ratio between the average total 
lightning in urban and natural 
areas. 

   NA 



Elev_ratio 
Ratio between the average 
elevation between urban and 
natural areas. 

   NA 

Prec_ratio 
Ratio between the average 
precipitation between urban 
and natural areas. 

   NA 

Tas_ratio, 
tmax_ratio, 
tmin_ratio 

Ratio between the average 
mean, minimum and maximum 
temperature between urban 
and natural areas, respectively. 

   NA 

Aer_ratio 
Ratio between the average 
aerosol optical depth between 
urban and natural areas. 

   NA 

Sulf_ratio 
Ratio between the average 
sulfate dioxide between urban 
and natural areas. 

   NA 

Nitr_ratio 
Ratio between the average 
nitrate dioxide between urban 
and natural areas. 

   NA 

Longitude_km Longitude in kilometers. km  NA 
Latitude_km Latitude in kilometers. km  NA 

Dist_to_water 
Shortest distance to large water 
bodies among the urban cells 
per city.  

km  NA 

 
 

Ancillary files: software, code, protocols 
• Analyzing_the_dataset_08142024.R 
• creating_urban_lightning_dataset_08142024.R 

 

 

 
 

 

 

 

 



Data provenance 
 

Group Variable Data type Dataset DOI or URL Creator (name & email) Contact (name & email) 

Climate 

Regional 
lightning 
frequency 

Electrical 
ground 
sensor 
network 

https://ams.confex
.com/ams/91Annu
al/webprogram/Pa
per183895.html  

Liu and Heckman 
(sheckman@earthnetwork
s.com) 

Stan Heckman 
(sheckman@earthnetwork
s.com) 

Average air 
temperature 

Reanalysis 
of weather 
station 
data 

https://doi.org/10.
1038/sdata.2017.1
22 

Karger, D. N., Conrad, O., 
Böhner, J., Kawohl, T., 
Kreft, H., Soria-Auza, R. 
W., Zimmermann, N. E., 
Linder, H. P., & Kessler, M. 
(dirk.karger@wsl.ch) 

Dirk Nikolaus Karger 
(dirk.karger@wsl.ch) 

Maximum air 
temperature 
Minimum air 
temperature 

Local 
precipitation 

https://doi.org/10.
1038/sdata.2017.1
22 

Pollution 

Total 
aerosols 

Satellite 
sensors 

https://doi.org/10.
1038/nature01091 

Kaufman, Y. J., Tanré, D., 
& Boucher, O.  
(kaufman@climate.gsfc.na
sa.gov) 

Yoram J. Kaufman 
(kaufman@climate.gsfc.na
sa.gov) 

NO2 
https://doi.org/10.
5067/Aura/OMI/D
ATA2017 

Krotkov, N. A., & Veefkind, 
P. 
(nickolay.a.krotkov@nasa.
gov) 

Nickolay A. Krotkov 
(nickolay.a.krotkov@nasa.
gov) 

SO2 
Reanalysis 
of satellite 
data 

https://doi.org/10.
1175/JCLI-D-16-
0758.1 

Gelaro, R., McCarty, W., 
Suárez, M. J., Todling, R., 
Molod, A., Takacs, L., 
Randles, C. A., Darmenov, 
A., Bosilovich, M. G., 
Reichle, R., Wargan, K., 
Coy, L., Cullather, R., 
Draper, C., Akella, S., 
Buchard, V., Conaty, A., da 
Silva, A. M., Gu, W., … 
Zhao, B. 
(ron.gelaro@nasa.gov) 

Ronald Gelaro 
(ron.gelaro@nasa.gov) 

Topography 
& 
Geography 

Elevation Satellite 
sensors 

https://globalsolar
atlas.info 

Solargis 
(contact@solargis.com) 

Solargis 
(contact@solargis.com) 

Distance to 
water bodies 

Satellite 
sensors 

https://www.marin
eregions.org 

Flanders Marine Institute 
(info@marineregions.org) 

Salvador Fernández 
Bejarano 
(info@marineregions.org) 

https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/nature01091
https://doi.org/10.1038/nature01091
https://doi.org/10.5067/Aura/OMI/DATA2017
https://doi.org/10.5067/Aura/OMI/DATA2017
https://doi.org/10.5067/Aura/OMI/DATA2017
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://globalsolaratlas.info/
https://globalsolaratlas.info/
https://www.marineregions.org/
https://www.marineregions.org/


Urban 
chars. 

Urban area Satellite 
sensors 

https://lpdaac.usgs
.gov/products/mcd
12q1v006/ 

Friedl, M., & Sulla-
Menashe, D. 
(friedl@bu.edu) 

Mark Friedl 
(friedl@bu.edu) 

Population Population 
census 

https://population.
un.org/wup/Downl
oad/ 

UN  (population@un.org) Patrick Gerland 
(population@un.org) 

Greenspace Satellite 
sensors 

https://lpdaac.usgs
.gov/products/mcd
12q1v006/ 

Friedl, M., & Sulla-
Menashe, D. 
(friedl@bu.edu) 

Mark Friedl 
(friedl@bu.edu) 

 

 

https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://population.un.org/wup/Download/
https://population.un.org/wup/Download/
https://population.un.org/wup/Download/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
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