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Abstract

Urbanization tends to increase local lightning frequency (i.e., the "lightning enhancement" effect).
Despite many urban areas showing lightning enhancement, the prevalence of these effects is unknown,
and the drivers underlying these patterns are poorly quantified. We conducted a global assessment of
cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate how the likelihood and
magnitude of lightning enhancement vary with geography, climate, air pollution, topography, and urban
development. The likelihood of exhibiting lightning enhancement increased with higher temperature
and precipitation in urban areas relative to their natural surroundings (i.e., urban heat islands and
elevated urban precipitation), higher regional lightning strike frequency, greater distance to water
bodies, and lower elevations. Lightning enhancement was stronger in cities with conspicuous heat island
and elevated urban precipitation effects, higher lightning strike frequency, larger urban areas, and lower
latitudes. The particularly strong effects of elevated urban temperature and precipitation indicate that

these are dominant mechanisms by which cities cause local lightning enhancement.
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Timeframe
e Begin date: January 2013
e End date: December 2020
e Data collection ongoing/completed? Completed

Geographic location
349 cities worldwide

Methods
Lightning strike data

We quantified the urban lightning enhancement effect using Earth Networks Total Lightning Network
(ENTLN) data. ENTLN continuously detects and locates lightning using each discharge's time and signal
amplitude (Liu & Heckman, 2012); here, we focus on the ENTLN-classified cloud-to-ground flashes,
which we call lightning strikes. We omitted lightning strikes <10 kA in magnitude to avoid


https://opensource.org/license/MIT

misclassification with in-cloud lightning (Cummins et al., 1998). We calculated monthly mean lightning
strike frequency (lightning strikes km yr?) on a 0.05x0.05-degree grid (ca. 5x5 km) extending from 60°N
to 60°S latitude for 2013-2020.

Urban and natural areas

We used the 2018 Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data (MCD12C1
Version 6; Friedl & Sulla-Menashe, 2019) on a 0.05-degree grid to identify urbanized land and its
surrounding natural areas. Spatially, we defined cities as clusters of 0.05 x 0.05-degree cells with more
than 50% urbanization overlapping the city center, defined by the United Nations World's Cities in
2018-Data Booklet (UN, 2018), or contiguous with other urban cells. Because the urbanization footprint
of a city is often a mosaic of developed and undeveloped space (e.g., water bodies), we also included
any cell with >50% urban area that was within two cells of the city center or contiguous city area (no
cells of <50% urban area were included in a city). This process collapsed 22 pairs of cities into a single
urban center (e.g., Dallas/Ft. Worth). We identified 884 cities with >300,000 inhabitants and at least one
cell comprising >50% urban area.

We used MODIS to identify natural areas surrounding each city. Specifically, we defined natural areas as
any combination of non-modified MODIS terrestrial layers (excluding water bodies, urban area, and
croplands) within 150 km of the boundaries of a city. When a cell was within 150 km of multiple cities,
we associated that natural area cell with the closest city. To limit edge effects, we removed all natural
areas within two cells (ca. 10 km) of any cell with >50% urban area. We only retained cities in our
dataset if they had at least 100 km? of associated natural area (691 cities qualified). The natural areas
capture typical lightning frequency of each region with limited direct influence of urbanization,
functioning as a reference point for evaluating the effect of each urban area.

Calculating lightning frequency

We calculated each pixel's average annual lightning frequency using only months with meaningful
lightning activity. We removed all cities with < 1 lightning strike km-2 yr-1 in their associated natural
areas. We also removed months from individual cities if their natural areas exhibited < 1 lightning strike
km-2 yr-1 in those months (328 cities removed). Additionally, we removed months and cities (8 cities in
total) lacking data for their covariates (e.g., precipitation data was not available for 2019 and 2020, and
the aerosol optical depth sensor could not make its measurement in certain areas during the study).
Following these criteria, we ultimately included 349 cities in the analyses.

We used Glass’s delta effect size and a simulation approach to evaluate whether each city exhibited
unambiguous lightning enhancement. To calculate Glass’s delta, we divided the mean difference in
lightning strike frequency (lightning strikes km-2 yr-1) between urban and natural areas by the standard
deviation of lightning strike frequency of the associated natural area. Glass’s delta was preferable to
other effect size metrics because the much larger sample size of the natural areas, relative to the cities,
results in a more precise estimate of standard deviation. Effect sizes 20.5 were considered significant
(Cohen, 1992). We confirmed that 218 of the 228 cities with effect sizes >0.5 were also identified as
significant using a simulation test based on random pulls from the natural area associated with each



city. We considered the 218 cities identified with both approaches as those exhibiting unambiguous
lightning enhancement. This conservative approach likely eliminated false positives while potentially
producing some false negatives.

The detection efficiency of ENTLN likely exhibits unquantifiable spatial biases. However, the spatial grain
of these biases is much larger than that of our city and natural area measurements (150 km radius)
because individual ENTLN sensors detect lightning over distances >1000 km. We measured the strength
of urban enhancement by dividing a city's average lightning strike frequency by the average lightning
strike frequency in its associated natural area (hereafter, urban-natural strike ratio). Accordingly, this
approach is insensitive to possible differences in detection efficiency among cities or over time.

Climatological, topographical, and geographic covariates

We used spatially explicit, gridded data products to aggregate climatological, topographical, and
geographic covariates for each 0.05 x 0.05-degree cell. We assigned each 0.05 x 0.05 cell the
proportional average of overlapping sulfur dioxide (50?) values because of the mismatch in resolution.
All other data were downscaled or upscaled to the same spatial grain as the lightning data. Climate and
pollution data were aggregated monthly. The temperature metrics captured monthly averages of daily
trends and were advantageous because of their broad spatial coverage and fine resolution, but they did
not capture detailed within-day variation, which could influence both rainfall and lightning activity
(Sheperd et al., 2015). All other variables had a single value because they did not change during the
study period (e.g., topography) or data were limited (e.g., population).

We used these spatially explicit datasets to calculate potential predictors of variation in the lightning
enhancement effect. For each variable described in Table 2, we extracted its average value for each
urban area during the months retained in the dataset (i.e., months with > 1 lightning strike km2 yr?). We
calculated annual and cumulative averages of those values from 2013-2020. The only exception was
regional lightning frequency, which equaled the mean lightning strike frequency across all natural and
urban cells (i.e., the region). To assess the density of urbanization within each city, we calculated the
percentage of land covered by natural areas within the urban cells of each city (hereafter, greenspace).
We also calculated the local effect of urbanization on temperature, precipitation, and all aerosol
variables. Specifically, we divided the average values of these predictors in the urban areas by their
average across all cells in the associated natural areas, and we referred to these variables as the
“variable” ratio (e.g., temperature ratio or precipitation ratio). This allowed us to determine if lightning
enhancement was directly associated with the effect of urbanization on local climate and pollution, such
as the urban heat island effect (i.e., urban temperature divided by natural area temperature). We log-
transformed overdispersed variables before analysis (12 of the 17 fixed-effect predictors were
transformed; average temperature, local precipitation, total elevation, absolute latitude, and
greenspace were not transformed). Because the annual data for aerosol depth and urban-natural strike
ratio included 3 and 4 zero values, respectively, we added half the smallest positive value (0.0020 for
aerosol optical depth and 0.0446 for urban-natural strike ratio) to each variable before transformation.

Model averaging



We used Akaike Information Criterion (AIC) model averaging to explore spatiotemporal variation in the
likelihood and magnitude of the lightning enhancement effect. To evaluate the probability of
enhancement, we constructed a generalized linear model with a binary response variable indicating
whether there was lightning enhancement (determined by a threshold of Glass' delta 2 0.5). This model
included a single value for each city with 17 predictors averaged across all years (349 observations). To
explore spatiotemporal variation in enhancement strength, we assessed how the urban-natural strike
ratio varied among cities with unambiguous enhancement using annual data from 2013-2018 (218 cities
with 1,217 city-year observations). Specifically, we constructed a mixed-effect linear model (fitted with
the Imer function of the Ime4 package; Bates et al., 2015) with an urban-natural strike ratio as the
response variable, a random effect for the city (accounting for the annual lightning variation of each
city), and the same collection of 17 fixed-effect predictors (Table 2; representing the linear relationships
between these predictors and the response variable). We used unique annual values for all variables
with yearly data (i.e., all lightning, climate, and pollution variables). We note that some variables were
omitted from this final set of predictors (i.e., mean maximum temperature, mean minimum
temperature, the ratios between urban and natural areas for these two variables, and the total
concentration of NO2) because of collinearity, as determined by Pearson correlations (R > 0.7) and
variance inflation factors (VIF > 5).

We fitted models for every possible combination of these terms (function dredge). Then, we averaged
all models with AICc values within 4 of the lowest AlCc values (function model.avg in package MuMIn;
Barton, 2010). We scaled all variables (Z-transformation) to allow direct comparison of coefficients, and
we identified significant predictors as model-averaged coefficients with 95% confidence intervals that
did not overlap with zero. Additionally, we performed forward model selection and assessed whether
including pairwise interaction terms between the significant predictors decreased model AIC. We
verified the appropriate model fit and the need for all transformations by evaluating model residuals
(e.g., Q-Q plots).

Data Table

Table name(s): Pixels_lighting_month_year_v2.csv

Table description(s): We used this table to create the two datasets needed to run the model and
estimate the strength and magnitude of the lightning enhancement over urban areas. Based on this
dataset, we aggregated the data by city by year (to measure the strength of the lightning enhancement)
and only by city (to measure the magnitude of the lightning enhancement).
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or date format
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city City
country Country




month

Month of analysis

Jan: January, Feb:
February, Mar:
March, Apr: April,
May: May, Jun:
June, Jul: July,
Aug: August, Sep:
September, Oct:
October, Nov:
November, Dec:
December

year

Year of analysis

Area_urban

Area of the cities (aggregation
of cells with more than 50% of
urban coverage).

Km

Lat_city and
lon_city

Latitude and longitude of the
city center are defined in the
United Nations, Department of
Economic and Social Affairs,
Population Division (2018).
World Urbanization Prospects:
The 2018 Revision, Online
Edition, respectively.

degrees

Urban_area

Area of the city defined by the
United Nations, Department of
Economic and Social Affairs,
Population Division (2018).
World Urbanization Prospects:
The 2018 Revision, Online
Edition.

Km

Sd_CG_urban

The standard deviation of the
Cloud-to-Ground (CG) lightning
on each urban cell aggregated
by city, month, and year.

number of CG
lightning km?
year?

NA

Mean_CG_urban

Mean of the CG lightning on
each urban cell aggregated by
city, month, and year.

number of CG
lightning km?
year?

NA

Sd_total_urban

The standard deviation of the
total lightning (CG and in-cloud
lightning) on each urban cell
aggregated by city, month, and
year.

number of
total lightning
km? year?

NA

Mean_total_urban

Mean of the total lightning on
each urban cell aggregated by
city, month, and year.

number of
total lightning
km? year?

NA

Per_urban

Average percentage of urban
coverage in the urban cells or

%

NA




pixels (>50%) that make up the
area of the city.

Per_natar_urban

Average percentage of natural
coverage in the urban cells or
pixels (>50%) that make up the
area of the city.

%

NA

Pop_2018

Population of 2018 defined in
the United Nations, Department
of Economic and Social Affairs,
Population Division (2018).
World Urbanization Prospects:
The 2018 Revision, Online
Edition.

Thousands of
people

NA

Mean_elev_urban

Average elevation of the urban
cells aggregated by city, month,
and year.

masl

NA

Mean_prec_urban

Average precipitation of the
urban cells aggregated by city,
month, and year.

kg m? month
1

NA

Mean_tas_urban,
mean_tmax_urban,
mean_tmin_urban

Average mean, minimum and
maximum temperature of the
urban cells aggregated by city,
month, and year.

NA

Mean_aer_urban

Average aerosol optical depth
of the urban cells aggregated by
city, month, and year.

um of
particulates
scaled from 0
tol

NA

Mean_sulf _urban

Average sulfate dioxide of the
urban cells aggregated by city,
month, and year.

ug m

NA

Mean_nitr_urban

Average nitrate dioxide of the
urban cells aggregated by city,
month, and year.

billion
molecules
mm?~2

NA

Area_natar

Area of the natural ecosystems
(cells of non-human
ecosystems; aggregation of cells
with more than 90% of natural
coverage).

NA

Sd_CG_natar

Standard deviation of the
Cloud-to-Ground (CG) lightning
on each natural cell aggregated
by city, month, and year.

number of CG
lightning km?
year?

NA

Mean_CG_natar

Mean of the CG lightning on
each natural cell aggregated by
city, month, and year.

number of CG
lightning km?
year?

NA




Sd_total_natar

Standard deviation of the total
lightning (CG and in-cloud
lightning) on each natural cell
aggregated by city, month, and
year.

number of
total lightning
km? year?

NA

Mean_total_natar

Mean of the total lightning on
each natural cell aggregated by
city, month, and year.

number of
total lightning
km? year?

NA

Per_natar

Average percentage of natural
coverage in the natar cells or
pixels (>90%) that make up the
area of the natural ecosystem
associated with each city.

%

NA

Mean_elev_natar

Average elevation of the natural
cells aggregated by city, month,
and year.

masl

NA

Mean_prec_natar

Average precipitation of the
natural cells aggregated by city,
month, and year.

kg m?2 month
1

NA

Mean_tas_natar,
mean_tmax_natar,
mean_tmin_natar

Average mean, minimum and
maximum temperature of the
natural cells aggregated by city,
month, and year, respectively.

NA

Mean_aer_natar

Average aerosol optical depth
of the natural cells aggregated
by city, month, and year.

pum of
particulates
scaled from 0
tol

NA

Mean_sulf_natar

Average sulfate dioxide of the
natural cells aggregated by city,
month, and year.

ug m?

NA

Mean_nitr_natar

Average nitrate dioxide of the
natural cells aggregated by city,
month, and year.

billion
molecules
mm-

NA

Glass_delta

Effect size of the CG lightning
between urban and natural
areas to define unambiguous
lightning enhancement.

NA

CG_ratio

Ratio between CG lightning in
urban and natural areas.

NA

Lat_group

Location of the city based on
their latitude. Nothern (>23.5°),
tropical (23.5°< city >-23.5°) and
southern (<-23.5°).

NA

Total_ratio

Ratio between the average total
lightning in urban and natural
areas.

NA




Ratio between the average
Elev_ratio elevation between urban and NA
natural areas.
Ratio between the average
Prec_ratio precipitation between urban NA
and natural areas.
. Ratio between the average
Tas_ratio, . .
- . mean, minimum and maximum
tmax_ratio, NA
tmin ratio temperature between urb.an
- and natural areas, respectively.
Ratio between the average
Aer_ratio aerosol optical depth between NA
urban and natural areas.
Ratio between the average
Sulf_ratio sulfate dioxide between urban NA
and natural areas.
Ratio between the average
Nitr_ratio nitrate dioxide between urban NA
and natural areas.
Longitude_km Longitude in kilometers. km NA
Latitude_km Latitude in kilometers. km NA
Shortest distance to large water
Dist_to_water bodies among the urban cells km NA
per city.

Ancillary files: software, code, protocols
e Analyzing_the_dataset_08142024.R
e creating_urban_lightning_dataset 08142024.R




Data provenance

Group Variable Data type Dataset DOl or URL | Creator (name & email) Contact (name & email)
Regional Electrical https://ams.confex Liu and Heckman Stan Heckman
. . ground .com/ams/91Annu
lightning (sheckman@earthnetwork | (sheckman@earthnetwork
frequenc sensor al/webprogram/Pa s.com) s.com)
g ¥ network per183895.html ' '
Average air
temperature ) )
. Maximum air https://doi.org/10. Karger, D. N., Conrad, O.,
Climate . 1038/sdata.2017.1 R
temperature | Reanalysis ) Bohner, J., Kawohl, T.,
Minimum air | of weather | == Kreft, H., Soria-Auza, R. Dirk Nikolaus Karger
temperature | station W., Zimmermann, N. E., (dirk.karger@wsl.ch)
data https://doi.ore/10 Linder, H. P., & Kessler, M.
: i. . .
dirk.karger@wsl.ch
tocal 1038/sdata.2017.1 | ' ger@wsl.ch)
precipitation
22
Kaufman, Y. J., Tanré, D., Yoram J. Kaufman
Total https://doi.org/10. | & Boucher, O. (kaufma.n@climate sfe.na
aerosols 1038/nature01091 | (kaufman@climate.gsfc.na -gstc.
. sa.gov)
Satellite sa.gov)
SENsors https://doi.org/10. Erotkov, N.A., & Veefkind, Nickolay A. Krotkov
NO, 5067/Aura/OMI/D (r;ickola a.krotkov@nasa (nickolay.a.krotkov@nasa.
ATA2017 y-a. " | gov)
gov)
Gelaro, R., McCarty, W.,
. Sudrez, M. J., Todling, R.
Pollut ! ! P
ofiution Molod, A., Takacs, L.,
Randles, C. A., Darmenov,
Reanalysis | https://doi.org/10. A".BOSIIOVICh' M.G.,
) Reichle, R., Wargan, K., Ronald Gelaro
SO, of satellite | 1175/JCLI-D-16-
data 0758 1 Coy, L., Cullather, R, (ron.gelaro@nasa.gov)
— Draper, C., Akella, S.,
Buchard, V., Conaty, A., da
Silva, A. M., Gu, W, ...
Zhao, B.
(ron.gelaro@nasa.gov)
. Satellite https://globalsolar | Solargis Solargis
Elevation . . .
Topography sensors atlas.info (contact@solargis.com) (contact@solargis.com)
&
Geography Distance to Satellite https://www.marin | Flanders Marine Institute Salyador Fernandez
. . . . . Bejarano
water bodies | sensors eregions.org (info@marineregions.org)

(info@marineregions.org)



https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://ams.confex.com/ams/91Annual/webprogram/Paper183895.html
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/nature01091
https://doi.org/10.1038/nature01091
https://doi.org/10.5067/Aura/OMI/DATA2017
https://doi.org/10.5067/Aura/OMI/DATA2017
https://doi.org/10.5067/Aura/OMI/DATA2017
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://globalsolaratlas.info/
https://globalsolaratlas.info/
https://www.marineregions.org/
https://www.marineregions.org/

Urban
chars.

Satellite

https://lpdaac.usgs

Friedl, M., & Sulla-

Mark Fried|

Urban area censors .gov/products/mcd | Menashe, D. (friedl@bu.edu)
1291v006/ (friedi@bu.edu) '
. Population https://population. . Patrick Gerland
Population census un.org/wup/Downl | UN (population@un.org) (population@un.org)
oad/ pop .org
P sensors EOV/D ol (friedl@bu.edu)

1291v006/

(friedl@bu.edu)



https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://population.un.org/wup/Download/
https://population.un.org/wup/Download/
https://population.un.org/wup/Download/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
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