Metadata

Dataset Title:

Cary_Precip_Chemistry_Data.csv
Cary Environmental Monitoring Program Precipitation Chemistry Data

Abstract

This dataset is a contribution to the Cary Institute of Ecosystem Studies Environmental Monitoring Program. This program is a long-term data collection program designed to understand how the environment changes over time. The program includes monitoring of climate including temperature and precipitation, as well as variables related to air pollution, such as acid deposition and ozone, and water pollution and other streamwater chemistry. Our program also includes solar radiation monitoring, which includes diffuse and global photosynthetically active radiation (PAR), diffuse and global shortwave radiation, net radiation and UV. Long-term monitoring of solar radiation provides us with an understanding of atmospheric energy dynamics, which can affect natural and human systems.

Data provided in this dataset include precipitation chemistry data.

The Cary Institute of Ecosystem Studies, Environmental Monitoring Program furnishes data under the following conditions: The data have received quality assurance scrutiny by our program, and, although we are confident of the accuracy of these data, Cary Institute will not be held liable for errors in these data. Data are subject to change resulting from updates in data screening or models used. Data citation: The following is a standard citation for referencing data from the Cary Institute of Ecosystem Studies, Environmental Monitoring Program:

Cary Institute of Ecosystem Studies, Environmental Monitoring Program. 2021 (or current year). Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, www.caryinstitute.org.

Those wishing to publish data from Cary Institute of Ecosystem Studies, Environmental Monitoring Program are encouraged to contact data manager Vicky Kelly, kellyv@caryinstitute.org.

Investigators

First Name	Middle Initial	Last Name	Organization	e-mail address	ORCID ID
Victoria	R	Kelly	Cary Institute of Ecosystem Studies	kellyv@caryinstitute.org	0000-0003-3418-9211

Keywords

Cary Institute, Cary Institute of Ecosystem Studies, data, climate, precipitation, chemistry, wet deposition conductivity, conductance, pH, calcium, magnesium, potassium, sodium, chloride, sulfate, nitrate, ammonium, phosphate

Timeframe

The data in this file start January 1984 and end December 2020. Data collection is ongoing.

Geographic location

The precipitation collector is located in a flat, open field at an elevation of 128 m. GPS coordinates for the site are: N41.785823 W073.741447.

Methods

Precipitation samples are collected using the wet side of an automatic wet-dry collector. The collector uses a moisture sensor that causes a motor to remove a cover from a clean bucket when it senses precipitated moisture. Samples are collected on an event basis; an event is defined as continuous precipitation that has not been interrupted by more than 6-hours. At the end of an event, the sample is collected, weighed, and transferred to a labeled sample bottle. If the sample is frozen, it is allowed to sit at room temperature until the entire sample is melted. After the sample is bottled, it is analyzed at the Cary Institute analytical laboratory for pH, sulfate, nitrate, ammonium, phosphate, chloride, sodium, calcium, magnesium and potassium ions. See Table 1 for analytical methods. If the quantity of sample is insufficient for all of these analyses, as many of the analyses as possible are completed with preference given to pH, sulfate, nitrate and ammonium in that order. Values that are below detection limits are replaced with one half of the detection limit.

In 1999, we changed the sample-handling protocol as follows. A 60-ml aliquot of sample is preserved with 2 drops of chloroform and refrigerated. This aliquot is analyzed for phosphate, ammonium, and nitrate. Comparisons of phosphate, ammonium and nitrate were made for one year between samples treated with chloroform and samples left untreated. There was no significant difference between treated and untreated samples for ammonium and nitrate, but phosphate was higher in samples treated with chloroform. We made no adjustments to data collected prior to 1999.

Beginning in March 2017, we changed the sample-handling protocol as follows. The 60-ml aliquot of samples that were previously treated were chloroform were instead frozen. We discontinued use of chloroform. We compared phosphate, ammonium and nitrate concentrations for 17 samples; the differences in concentration between chloroformed and frozen samples were within the detection limits of the instrument.

PRECIPITATION CHEMISTRY INSTRUMENT MAKE, MODEL, DATES USED, SENSITIVITY, RECOMMENDED SIGNIFICANT FIGURES

Precipitation sample collection 1983-2008 Aerochem Metrics, Model 301, Automatic Sensing Wet/Dry Precipitation Collector, 2009-present Yankee Environmental model TPC-3000 Total Precipitation Collector Precipitation volume 1983-June 2007 Belfort Instrument Co. Universal Recording Rain Gauge, Series 5-780, sensitivity +0.05 inch (1.3 mm), recommended significant figs. 2. Gauge was encircled by wind alter-shields. The tops of the alter-shields were level with the opening of the rain gauge. Precipitation amount from each event was checked using a standard plastic rain gauge and/or a snow depth / rain gauge. July 2007-present, Geonor Precipitation Gauge Model T-200B from co-located USCRN station.

PRECIPITATION CHEMISTRY DATA QUALITY ASSURANCE & QUALITY CONTROL PARAMETERS & METHODS

Each sample is weighed to check that the volume of sample collected is within a reasonable range of the volume of precipitation that is recorded by the precipitation gauges. Sample buckets are discarded every 3-12 months and replaced with new, clean buckets. To clean new buckets, they are rinsed 10 times with deionized water, 10 times with double deionized water, filled with double deionized water and allowed to stand overnight, rinsed again 10 times with double deionized water and filled again with double deionized water. The conductivity of the double deionized water in the bucket is checked. If it is more than the conductivity of double deionized water in a clean beaker (less than 1 umho), the process is repeated. Sample bottles are cleaned by rinsing with deionized water 7 times, filling with deionized water, allowed to

stand overnight and rinsed again 4 times. A small amount of the precipitation sample is used to rinse the bottle before it is filled with the sample. Once each year a bucket is placed in the collector and retrieved before a precipitation event occurs. This bucket is returned to the lab where it is filled with double deionized water, which is bottled, preserved and analyzed as a regular sample. This is to ensure that sample-handling techniques introduce no contamination. Note that a modification of this protocol was used during the 2020-2021 COVID-19 restrictions due to limited access to lab facilities.

When analytical results are received from the Cary Institute analytical lab, data are examined and checked using two methods. First, ion balances and ionic strength are calculated using the following equations:

```
lon Balance = ((ANIONS - CATIONS)/((CATIONS+ANIONS)/2))*100;
Ionic Strength = ANIONS + CATIONS;
Where:
CATIONS = caueq + mgueq + naueq + kueq + nh4ueq + hueq;
ANIONS = no3ueq + so4ueq + clueq + po4ueq;
And:
caueq=((conc_Ca/(40.08/2)))*1000;
mgueq=((conc Mg/(24.305/2)))*1000;
naueg=(conc Na/22.98977)*1000;
kueq=(conc_K/39.098)*1000;
nh4ueq=(conc NH4/18.0383)*1000;
hueq=(conc_H/1.0079)*1000;
no3ueq=(conc NO3/62.0049)*1000;
so4ueq=((conc_SO4/(96.0576/2)))*1000;
clueg=(conc Cl/35.453)*1000;
po4ueq=((conc_PO4/(94.97136/3)))*1000;
```

concentrations are in mg/L and conc_H=1000*EXP(-2.3026*PH)

Ion balances and ionic strength are examined and samples are considered for reanalysis if the following criteria are met:

Ionic Strength (ueq) and Ion Balance (%) Less than 50greater than 40 Between 50 and 100greater than 20 Greater than 100greater than 10

The quality of data is also checked by examining time series graphs of sample concentrations for each analyte. If any samples are obvious outliers, they are considered for reanalysis.

Analytical methods and Instrument notes including calibration schedule, malfunctions and repairs, new instrumentation, anecdotal information etc. are available on request.

Data Table

Column name	Description	Unit or code explanation or date format	Empty value Code
	Date precipitation event started in		
	MM/DD/YYYY format where MM is		
	month number, DD is date number		
START_DATE	and YYYY is year		NA
	Time precipitation event started in		NA
START_TIME	hhmm format. Note that data are	Eastern Standard Time	

	from the propeding bear for		
	from the preceding hour. For		
	example, data for hour 0100 are from		
	midnight to 1:00 a.m EST.		NI A
	Date precipitation event ended in		NA
	MM/DD/YYYY format where MM is		
5110 0475	month number, DD is date number		
END_DATE	and YYYY is year		
	Time precipitation event ended in		NA
	hhmm format. Note that data are		
	from the preceding hour. For		
	example, data for hour 0100 are from		
END_TIME	midnight to 1:00 a.m EST.	Eastern Standard Time	
	Total volume of precipitation during		NA
VOL_CM	that month (cm)	Cm	
			NA
CA_DEP	Calcium ion deposition (g/ha)	g/ha	
			NA
CL_DEP	Chloride ion deposition (g/ha)	g/ha	
			NA
K_DEP	Potassium ion deposition (g/ha)	g/ha	
			NA
MG_DEP	Magnesium ion deposition (g/ha)	g/ha	
			NA
NA_DEP	Ammonium_N deposition (g/ha)	g/ha	
_			NA
NH4_N_DEP	Ammonium_N deposition (g/ha)	g/ha	
	_ 1 (0, 7		NA
NO3_N_DEP	Nitrate_N ion deposition (g/ha)	g/ha	
	_ 1 (0, 7		NA
PO4_DEP	Phosphate ion deposition (g/ha)	g/ha	
· · · <u>-</u> · · ·	(8)	67	NA
SO4 DEP	Hydrogen ion deposition (g/ha)	g/ha	
H DEP	Hydrogen ion deposition (g/ha)	g/ha	NA
52.	Calcium ion concentration (mg/L) (DL	8,	NA
CA_CONC	0.01 mg/L)	mg/L	147.
C/(_CO/(C	Chloride ion concentration (mg/L) (DL		NA
CL_CONC	0.02 mg/L)	mg/L	
CL_CONC		liig/ L	NA
K CONC	Potassium ion concentration (mg/L)	no a /1	INA
K_CONC	(DL 0.01 mg/L)	mg/L	D1.0
NAC CONC	Magnesium ion concentration (mg/L)		NA
MG_CONC	(DL 0.01 mg/L)	mg/L	
	Sodium ion concentration (mg/L) (DL		NA
NA_CONC	0.01 mg/L)	mg/L	
	Ammonium ion concentration (mg/L)		NA
NH4_CONC	(DL 0.02 mg/L)	mg/L	
	Ammonium_N concentration (mg/L)		NA
NH4_N_CONC	(DL 0.02 mg/L)	mg/L	
	Nitrate ion concentration (mg/L) (DL		NA
NO3_CONC	0.02 mg/L)	mg/L	
	Nitrate_N concentration (mg/L) (DL		NA
NO3 N CONC	0.02 mg/L)	mg/L	

	Sulfate ion concentration (mg/L) (DL		NA
PO4_CONC	0.02 mg/L)	mg/L	
	Phosphate ion concentration (mg/L)		NA
PO4_P_CONC	(DL 0.002 mg/L)	mg/L	
	Sulfate ion concentration (mg/L) (DL		NA
SO4_CONC	0.02 mg/L)	mg/L	
H_CONC	Hydrogen ion concentration (mg/L)	mg/L	NA

Intellectual Rights

This information is released under the Creative Commons license - Attribution-NonCommercial - CC BY-NC (https://creativecommons.org/licenses/by/4.0/).

Methods of Analysis Cary Institute of Ecosystem Studies Analytical Laboratory

ION	INSTRUMENT	TECHNIQUE
NH4 ⁺	Lachat QuikChem 8000	Phenate method ¹ #10-107-06-1-J
SO ₄ =, NO ₃ - (PPT, AQ), Cl ⁻	Dionex ICS2000 Ion Chromatograph	Ion exchange chromatography, AS18 and AG18 columns, SRS (self-regenerating) suppressor ² with CRD 200 (carbonate removal device)
K ⁺ , Na ⁺	Perkin Elmer Aanalyst 300 Atomic Absorption Spectrometer	Flame atomization, direct air ³
Ca ⁺⁺ , Mg ⁺⁺	Leeman Labs Inductively Coupled Plasma/Profile	Emission spectroscopy
NO ₃ - (WC)	Lachat QuikChem 8000	Cadmium diazotization ¹ Method #10-107-04-1-C
PO ₄	Lachat QuikChem 8000	Phosphomolybdate ¹ Method #_10-115-01-1-M
рН	Fisher-Accumet AR20 pH meter with Fisher glass electrode, Fisher calomel reference probe	Standardization with Fisher 7.00 and 3.00 buffer solutions; samples and buffers at room temperature
Specific Conductance	Fisher-Accumet AR20 pH/conductivity meter	Conductivity probe w/ 1.0 cm ⁻¹ cell constant
DOC (Dissolved Organic Carbon)	Shimadzu TOC 5050	High temperature combustion of sample; platinum catalyst C to CO2, NDIR detect.

¹Standard Lachat methods, 2000, Lachat Instruments, Milwaukee, WI

² Small, H., Stevens, T.S., and Bauman, W.C. *Anal. Chem.* 1975, 47:1801-1809

³ Slavin, W. *Atomic absorption spectroscopy*. Wiley-Interscience, New York. 1968. PPT=precipitation samples, AQ=air samples, WC=Wappinger Creek samples