
Querying the MFE Sensor Database

Kaija Gahm

Last compiled on 2021-04-22

Introduction
Motivation

The MFE sensor database is much larger than the regular MFE database, since it contains high-frequency
data. (As I’m writing this, the file is 2.81 GB, vs. 125.7 MB for the regular database).

As a result, querying data from the sensor database can be complicated. The simplest way is to load an
entire table into R’s memory and then perform any operations on the resulting object; this is intuitive if
you’re used to working with relatively small datasets in R. But because the sensor database tables are so
large, loading and working with a full table can take a prohibitively long time. Sometimes, you might not be
able to load the full table at all because it’s too large to fit in R’s memory.

The sensordbTable function

The sensordbTable() wrapper function can also handle slightly more complicated queries. It can be found
on GitHub, and it takes the following arguments:

• table the data table to be returned
• dbname name of the database file
• lakeID vector of lakeID’s that you want
• depthClass vector of depthClasses that you want
• minDepth_m numeric value of minimum sensor depth
• maxDepth_m numeric value of maximum sensor depth
• minDate minimum sample date in standard unambiguous format
• maxDate maximum sample date in standard unambiguous format
• dateFormat date format, if not in standard unambiguous format

These arguments can help you send more specific queries to the database to pull out just the data you need
from a given sensor database table, instead of grabbing the whole table from the start.

However, these arguments don’t cover all specific queries that you might want to write, so depending on what
question you’re answering, you will still have to do some data subsetting after pulling the initial dataset into
R.

Working with the database through the tidyverse

I (Kaija) am a big fan of the tidyverse suite of R packages. But I’m not here to evangelize! If you don’t like
using the tidyverse, there’s no pressure to use this method. I just wanted to demonstrate it in case it’s useful
to someone.

There’s a package in the tidyverse called dbplyr, which provides some backend functions for working with
databases through dplyr, one of the most common data wrangling packages in the tidyverse. You don’t
actually have to load dbplyr itself–it will just work in the background when you use what look like dplyr
functions. In a nutshell, dbplyr allows you to perform data subsetting operations on remote database tables

1

https://github.com/MFEh2o/db/blob/master/sensordbTable.R
https://www.tidyverse.org/

before pulling the data into R’s memory, using syntax that will be familiar if you’re used to dplyr. Behind
the scenes, it translates that code into SQL queries, which it sends to the database.

You can read more about the technicalities of dbplyr here, but I’m just going to demonstrate a workflow
that works for me. Hopefully this will allow you to customize the functions to your own queries.

Step by step
1. Install packages

You’ll need to install RSQLite and dplyr. Or, as I usually do, RSQLite and the entire tidyverse. I also like
to install here to manage my file paths.
library(RSQLite) # for the database connection
library(tidyverse) # for dplyr/dbplyr
library(here) # for file paths

2. Connect to the database

You probably aren’t used to manually connecting to the database, since the dbTable and sensordbTable
functions do this behind the scenes. But luckily, it’s just one line of code, and you can copy and paste it until
you memorize it.
con <- dbConnect(SQLite(), # this is the "drv", or "driver" argument. I...

don't fully understand what it does.
here("MFEsensordb_20200526.db")) # this is a path to my

database file, MFEsensordb_20200526.db. This path is written relative to
the R project root directory, aka the folder where my .Rproj folder is
stored--that's the magic of the `here` package. So in this case, my sensor
database file is stored in the main project directory. You might have to
customize this file path to point to your own file, depending on
where it's stored.

For more info on the here package and relative file paths, see https://here.r-lib.org/.

For more information on RStudio “projects”, the .Rproj file, and a project-oriented workflow, see https:
//www.tidyverse.org/blog/2017/12/workflow-vs-script/.

Okay, now we’ve created a database connection object called con. We can double-check that we correctly
connected to the database by getting a list of all the database tables.
(I'm printing just the first 10 for the sake of brevity)
dbListTables(con)[1:10] # great, that looks like what we'd expect.

[1] "CHANGES_CODE_KEY" "DO_CORR" "DO_RAW"
[4] "HOBO_METSTATION_CORR" "HOBO_METSTATION_RAW" "HOBO_PRESS_CORR"
[7] "HOBO_PRESS_RAW" "HOBO_TCHAIN_CORR" "HOBO_TCHAIN_RAW"
[10] "METADATA"

3. Write a query using tbl() and collect()

Now, we’re going to write a simple query to the database, mirroring a query that we might be able to write
using the sensordbTable function.

Let’s say we’d like to get data from the DO_CORR table, restricting the lake to WL.

The query would look like this:

2

https://dbplyr.tidyverse.org/
https://here.r-lib.org/
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/

dat <- tbl(con, "do_corr") %>%
filter(lakeID == "WL") %>%
collect()

Let’s break down the steps here. tbl(con, "do_corr") establishes that we’re going to be pulling data from
the DO_CORR table of the data source con. Then, filter(lakeID == "WL") restricts the query to grab
only data from WL. Finally, collect() tells R that we’re done writing our query, and it should go ahead
and pull the requested data.

Importantly, this is different than loading in the entire DO_CORR table and then filtering it to just WL
rows, because the filtering is done as part of the query itself. The data isn’t loaded into R’s memory until
after we’ve filtered it, meaning that we end up loading a smaller dataset.

So far, what I’ve shown you is doable with sensordbTable() as well. But what if you want to go beyond the
arguments to that wrapper function?

3. A more complicated query

Now I’d like to pull data from EL_DeepHole_, between 0.5 and 5 meters depth. Because of the analysis I’m
doing, I know I won’t need information about the B3 change codes, and I also won’t need any temperature
information, so I can eliminate those columns from my query in order to make the final dataset even smaller.

Here’s how I’d write that query:
dat2 <- tbl(con, "do_corr") %>% # tell R which table we want to pull data from

remove the unwanted columns
select(-c("changesCodeTemp", "changesCodeDO", "cleanedTemp_C")) %>%
filter(lakeID == "WL", # we only want data from WL

location == "DeepHole", # and DeepHole
depth_m <= 5, # max depth 5m
depth_m >= 0.5) %>% # min depth 0.5m

collect() # send that query to the database

Once again, the full query, incorporating our selection of columns, lake, site, location, and depths, is written
before being sent to the database. The final dataset that’s pulled into R is 64155 rows by 8 columns, instead
of 64155 rows by 11 columns–which is the size of the WL-only data we pulled in our first query. So sure, we
could have first loaded that WL-only data and then run these filtering operations in R after loading it, but
this is more efficient.

4. Some more query examples

I can’t anticipate all the queries you might want to run, so here are a bunch of examples that you can copy if
they look useful.

A. List all the tables in the database
dbListTables(con)

[1] "CHANGES_CODE_KEY" "DO_CORR" "DO_RAW"
[4] "HOBO_METSTATION_CORR" "HOBO_METSTATION_RAW" "HOBO_PRESS_CORR"
[7] "HOBO_PRESS_RAW" "HOBO_TCHAIN_CORR" "HOBO_TCHAIN_RAW"
[10] "METADATA" "PRECIP_CORR" "PRECIP_RAW"
[13] "SITES" "UPDATE_METADATA" "YSI_CORR"
[16] "YSI_RAW"

B. List the column names in a table
dbListFields(con, "hobo_tchain_raw") # case doesn't matter

3

[1] "lakeID" "location" "depth_m" "dateTime" "dayfrac"
[6] "temp_C" "light_lux" "metadataID" "updateID"

C. See the first few rows of a table
tbl(con, "sites") %>%

head(10) %>%
collect()

A tibble: 10 x 6
lakeID location lat long UTM updateID
<chr> <chr> <chr> <chr> <chr> <chr>
1 BA DeepHole 46.24 -89.49 16T 307371E 5124083W originaldb.20190228
2 BE DeepHole 46.24 -89.51 16T 306355E 5124660W originaldb.20190228
3 BO DeepHole 46.23 -89.49 16T 307651E 5122680W originaldb.20190228
4 BR DeepHole 46.21 -89.47 16T 309118E 5121214W originaldb.20190228
5 CB DeepHole 46.23 -89.57 16T 301832E 5123096W originaldb.20190228
6 CR DeepHole 46.21 -89.47 16T 309216E 5120406W originaldb.20190228
7 CR Outlet NA NA NA originaldb.20190228
8 CR P1 46.20614 -89.47259 16T 309256E 5119925W originaldb.20190228
9 CR P6 46.20898 -89.47234 16T 309285E 5120239W originaldb.20190228
10 CR StaffGauge NA NA NA originaldb.20190228

D. Perform summary calculations before even loading the data into R, using group_by and summarize

tell R which table you're going to work with
tbl(con, "do_corr") %>%

choose columns
select(lakeID, dateTime, location, depth_m, cleanedDO_mg_L) %>%
convert the DO column to numeric
mutate(cleanedDO_mg_L = as.numeric(cleanedDO_mg_L),

create a new 'year' column
year = year(dateTime)) %>%

group by lake, location, and year because we want a mean/sd value for
each lake/location/year group
group_by(lakeID, location, year) %>%
compute means on each group, removing any NA values
summarize(mean_DO = mean(cleanedDO_mg_L, na.rm = T),

compute standard deviation on each group, removing any NA values
sd_DO = sd(cleanedDO_mg_L, na.rm = T)) %>%

collect() # pull the final data into R

A tibble: 78 x 5
Groups: lakeID, location [19]
lakeID location year mean_DO sd_DO
<chr> <chr> <int> <dbl> <dbl>
1 BA DeepHole 2012 7.66 1.85
2 BA DeepHole 2013 7.65 0.685
3 BA DeepHole 2014 8.25 0.909
4 BA DeepHole 2015 8.97 0.582
5 BA DeepHole 2016 7.77 0.667
6 BA DeepHole 2017 8.45 0.685
7 BA DeepHole 2018 8.37 0.899
8 BE DeepHole 2012 6.66 1.33
9 BO DeepHole 2012 4.74 3.57
10 BO DeepHole 2013 7.18 1.78
... with 68 more rows

4

So here, the whole computation is done before ever pulling the data into R.

5. Caveats

There are some calculations that can’t really be done before loading the data into R with collect(). From
the dbplyr documentation:

collect() requires that database does some work, so it may take a long time to complete.
Otherwise, dplyr tries to prevent you from accidentally performing expensive query operations:

Because there’s generally no way to determine how many rows a query will return unless you
actually run it, nrow() is always NA.

Because you can’t find the last few rows without executing the whole query, you can’t use tail().

You may run into other such problems when using tbl(). If something is mysteriously not working, you can
always go the slightly less efficient route and just load in the data first and then do your filtering/subsetting
after the fact.

Conclusion
I hope this was helpful! Generating queries with tbl() and collect() is a more powerful and flexible
alternative to using the sensordbTable() wrapper function. But that wrapper function is of course still
useful, and you shouldn’t hesitate to use it if that’s what you’re comfortable with.

Happy databasing!

5

https://dbplyr.tidyverse.org/articles/dbplyr.html

	Introduction
	Motivation
	The sensordbTable function
	Working with the database through the tidyverse

	Step by step
	1. Install packages
	2. Connect to the database
	3. Write a query using tbl() and collect()
	3. A more complicated query
	4. Some more query examples
	5. Caveats

	Conclusion

